航空機についてくわしくなりよう！
航空機ガイドブック

航空機についてくわしくなりよう！
航空機ガイドブック
世界で初めての航空機は西暦1486年にレオナルド・ダ・ヴィンチによって考えられました。417年後の1903年、ライト兄弟が「フライヤー号」で人類初の有人動力飛行に成功しました。それからおよそ100年、世界中を航空機が飛び回るようになりました。今や、私たちの生活は航空機なしでは成り立たないほどです。

けれど
航空機はなぜ飛べるのか？そのしくみについては意外と知られていません。

この本を読んで
航空機のことをよく知れば空を飛ぶのがもっと楽しく感じられることと思います。
航空機にはどんなものがあるのかな？

「航空機」とは、大気のある層（大気圏）を飛ぶ機械のこと。なんだか難しそうな気がするけど、飛行機も航空機の一種なんだよ。航空機にはいろんな形や飛び方がある、さっそく見てみよう！

飛行機

固定された翼と前進するための装置（動力装置）を持ち、翼に発生する揚力（くわしくは9ページ）によって飛ぶ航空機のこと。数人乗りのプロペラ機から500人乗りのジャンボジェット機まで、使い方に応じたさまざまな種類があります。

ヘリコプター

空中停止、バック、上昇、下降、前進飛行など思いのままに操縦できるヘリコプター。大きな回転する翼（ローター）が持つようです。もしエンジンが止まってしまってもローターをグブルと回転させてゆっくりと、お休みすることができます。

熱気球

「球皮」（風船のようなもの）にあたるかい空気を入れることによって空へのポール、人間が初めてつくった空飛ぶ乗り物です。ゆっくりと空をだたって楽しむスカイスポーツとして人気です。

飛行船

空気よりも軽いヘリウムなどのガスを船体の中に入れて飛びます。プロペラで前に進み、テールフィンで高度や方向を変えられます。飛び飛ぶ音が小さく、ゆっくりとした速度なので、空を飛び広告として使われています。

グライダー

グライダーは、ほかの飛行機や車などで引っ張ってもらって飛び上がります。モーターグライダーといっても小さなエンジンを持っているものもあります。飛び上がったグライダーはエンジンを使わずに滑空します。上昇気流や風に乗ると何時間でも飛び続けることができます。

日本の航空機

YS-11
初の国産旅客機で、1962年から飛行を始めました。価格の安い、すぐれた航空機なので、民間定期路線では2006年に運航を終了しました。

低騒音STOL実験機「飛鳥」
短い距離で離着陸ができる、騒音の少ない航空機の実験機としてつくられました。離着陸距離は439m、離着陸距離は509mなど、普通の大型ジェット機の約半分です。
エアバス A380

初飛行2005年4月27日、世界初の102階建て旅客機。欧州とアジア地域の各都市をノンストップで結ぶことができます。

全長：72.7m
翼のはさかばまでの翼長：63.8m
最大離陸重量：470t
最大巡航速度：マックス2,089km/時間（時速約1090km）
乗客定員：555人（最大853人）
生産国：ヨーロッパほか

スポットライヤ
左右を別々に動かして、エルロンと同じように傾きを変える時に使うことがあります。

エルロン
左右の傾き（ロール）を変える時に使いります。

フラップ
出したり引かれてたりする時に、飛行力を調節します（後述は8ページ）

燃料タンク
翼の中がタンクになっています

レドーム
気象レーダーや着陸誘導用の電波を受信するアンテナが入っています

客室
中は2階建ての客室です

コックピット
操作席です

方向舵
機首の方向（ヨー）を調整する時に使います。エルロンやスポイラーと一緒に進行方向を変える時に使います

縦尾翼
機体が左右にゆれるのを防ぎます

水平尾翼
機体が上下にゆれるのを防ぎます

補助動力装置
地上に止まっている時に、エアコンやライトの電力をつくり出します

主翼
飛行中の進行方向や位置を知らせるためのライトです。左の主翼が赤、右の主翼が緑、尾翼が白と決められています

主脚
離陸時に使います。飛行中は踏み着きます。※履歴にしません。

昇降舵
前後の傾き（ピッチ）を変える時に使います。エンジンと一緒に使うことで、上昇と下降を行います

前脚
※図は膨張にしましたが実際です

ジェットエンジン
空気を高圧へとします

貨物室
客室の下が貨物室です

航空灯
飛行中の進行方向や位置を知らせるためのライトです。左の主翼が赤、右の主翼が緑、尾翼が白と決められています

なぜ飛べるの？
航空機のしくみ

飛ぶひみつをさぐる前に、大型旅客機を例にとって
航空機の各部について知っておこう！
なぜ飛べるの？…離陸編…

エンジンスイッチオン！

機体は滑走路へ向かい、滑走を始めます

スピードはぐんぐん上がり時速270kmにまで達します

でも、ただ速く走るだけでは飛べないどうすれば…

ひみつはこの“翼の形”です！

揚力を大きくするフラップ

離陸の時には短い距離で停止するために速度を遅くする必要がありま
す。速度を下げると揚力が減るので、フラップを出して翼の形を変えて
揚力を補います。同時に抵抗も増えてしまうので、高い所をまっすぐ飛
ぶ時にはフラップをします。

飛行機が進む方向

翼の周りに空気が流れるとき飛行機が
引っ張り上げようとする力（揚力）が
はたらきます。これが空を飛行機が飛ぶひみつ！

揚力

“揚力”といいます

空気は翼の表面にくっついて流れ、翼の端っこには下向きの空気が集まる。

前からきた空気を翼で下にそうかすことで飛行機
は飛んでいます。

空気が速く流れるので、上側は下側に比べて、空気
がうすくなります（圧力が小さい）。逆に、下側は上側に
くらべて、空気がこくになります（圧力が大きい）。すると、圧力の大きい方から小さい方へ力がはたらき、翼は

揚力を大きくするフラップ

エンジンでスピードを上げて翼に揚力を受けることによって
飛行機は飛び立つことができます

空気の流れ

スプーンがひっぱられます

じゅうちから水を流すとスプーンが
水にひっぱられます。
なぜ飛べるの？…飛行編…

エンジンのパワー

飛行機が飛び続けることを可能にするしくみの1つはエンジンです。ジェットエンジンの場合、前から吸い込んだ空気を圧縮機で加熱、その空気を燃料と混ぜて燃焼させることで発生する燃焼ガスによってタービンが回され、圧縮機やファンが回転しガスが勢いよくおし出されます。勢いよく後ろに吹き出すことによって、前へ進むことができます。しかしこの方法は、マッハ1（音の速さ）以下で飛ぶ飛行機には速すぎて効率が悪くなります。そこで、エンジン前方に燃焼ガスの力で回る大きなファンのあるターボファンエンジンが使われています。ファンが吸い込んだ空気を直接後ろへおし出すことで前進する力を得ることができます。これによって、少ない燃料でもより遠くまで飛べ、エンジンの騒音をおさえることもできます。

すばらしいバランス感覚

飛行機は揚力によって飛び立つという話をしましたが、飛行機にはたくさんの力が寄っています。この4つの力のバランスをとることで、飛行機は飛び続けることができます。

4つの力のバランスとは…

揚力＝重力
推力＝抗力

揚力＞重力 上昇
揚力＝重力 飛行
揚力＜重力 降下
推力＞抗力 加速
推力＝抗力 減速

どんな機体の形がいいのかな？

JAXAは空気抵抗が少なく、より効率よく飛ぶことができる機体の形を研究しています。そのため、スーパーコンピュータや人工的に風をつくる「風洞」という設備を使って、機体の周りの空気が、どのように流れることを調べています。
なぜ飛べるのか... 着陸編...

飛び立ったらいつかは着陸しなければならないね。
時速900kmものスピードの飛行機は、高度1万mから、
どのように降下、着陸をおこなっているのかな？

降下・減速

スピードが落ち着ると揚力が弱まります。
そのままでは失速してしまうのでフラップを使って
揚力を大きくします

胴体にしまっていた脚を出します

飛行機の脚のしくみ

着陸する時、力を吸収する

力をおさえるグリップ

ガスが圧縮され、衝撃を吸収します

トンネル・イン・ザ・スカイ

JAXAでは飛行機がどのようなコースを通って着陸すればよいかを、わかりやすく表示するしくみ「トンネル・イン・ザ・スカイ」の研究を進めています。
パイロットは、画面に出るくるトンネルの中を通るように操縦すれば、安全に滑走路におけることができます。

まずかに機首を上げた状態で、主脚から着地

前脚も着地。
スパイラーを立て、エンジンの燃焼ガスを前方にふき出し
ブレーキをかけます

Landing!
なぜ飛べるの？ コックピットをのぞいてみよう！

飛行機のコックピットには、さまざまな機械が取り付けられている。
大型旅客機の場合は機長、副操縦士の2人のパイロットと、エンジンなどをチェック・調整する技術者の計3人で操縦するんだ。

1. オーバーヘッドパネル
油圧、電気、燃料、圧力、空調などを整えたり、きちんと飛行するための機械が設置されています。

2. オートパイロットコントロールパネル
大型旅客機は離陸後から着陸まで自動操縦で飛行することもできます。そこでこの装置で自動操縦装置への指示（飛行機の飛ぶ高度や方位、速度など）を設定します。

3. エンジン・システムモニタ用ディスプレイ
エンジンやシステムの状態を確認する画面です。

4. 航続計用ディスプレイ
位置や目標のルートを表示する画面です。

5. 飛行計器ディスプレイ
航空機の姿勢や高度、速度などの操縦のための基本的な情報を表示します。

6. ランディングギアレバー
離陸、着陸の時に、飛行機の脚を出し入れするためのレバーです。

7. スラストレバー
エンジンの出力を調節するためのレバーです。前におさると出力が上がり、スピードが速くなります。

8. フラップレバー
翼の後ろに取りつけられたフラップを出し入れるレバーです。

9. 操縦桿
飛行機を上下左右にあやめるためのハンドルです。操縦桿を引くと飛行機は上方向に、右に傾けると飛行機も右に飛行します。曲がる時は操縦桿をあやすだけでなく、方向舵を操作したりエンジンの出力を調節するなどします。

▲ボーイング777-200/300のコックピットの写真（画像提供：全日空株式会社）
いろいろな所で航空機が働いているよ！

航空機は、人が移動するためだけでなく、いろいろな所で使われているんだよ。
どんな所で活かされているのか見てみよう！

助ける
地上から向かうことが難しい場所へも、航空機なら飛んで行くことができます。病院やけがの人のをいち早く助けるために使われています。

ドクター・ヘリ
「空飛ぶ救急病院」として医療設備をそなえた航空機。早く治療を始めるために、少しでも多くの人が助かることが期待されます。

農業用ヘリコプター
航空機なら、広い土地に効率よくタネ、肥料などをまくることができます。日本では、災害などで荒れた土地や、地上での作業が困難な山岳地帯でも活かしています。

実験・訓練する
ちょっと変わった使われ方をしている航空機もあります。実験や訓練のための航空機です。

無重力実験機
放物飛行（上図を参照）によって20〜30秒、無重力に近い状態をつくり出し、その間に実験や宇宙飛行士の訓練をします。写真は訓練中の、左から大西洋、金星、月、白い雲でサポートカーの状態です。

撮る
本やテレビで上空から見た地上の風景、映像を目にすることがありますが、航空機はそうした撮影にとっってつけの乗り物です。

多用機
地図をつくるために、空から地上的様子を撮影する航空機です。機体の下部についているカメラで撮影します。

報道取材ヘリコプター
事件、災害、事故、交通情報などの空からの映像を、ニュース番組などで放送するために撮影しています。

運ぶ
航空機を使えば、遠い外国にも早く荷物を運べます。

貨物機
荷物運搬専用につくられた航空機です。車や動物などを運ぶこともあります。
なぜ？どうして？飛行機の豆知識

飛行機は何を目印に飛んでいるの？
パイロットは、地形や地上の目印を観察して飛行します。また、地上的無線局や衛星からの電波をうけて自分の位置や目標のルートからのすれを知ることもできます。

滑走路に書かれている数字は何？
飛行機を無線で誘導する時の東西南北を表しています。東は09、南は18、西は27となります。全ての方向を数字で表すことができます。

飛行機の窓はどうして小さいの？
飛行機には、飛行中にかかる力に耐えるように、たくさんのフレームがめぐらされています。怒を大きくするなら、代わりにフレームを取り外し、太いフレームにかえて、窓のガラスは厚くしかなければなりません。しかし、そのように加えると、機体が重くなって飛べなくなってしまいます。

飛行機の中で耳がいたくなるのはどうして？
地上の気圧になってしまっている私たちの体が、気圧の低い上空に行くと、体の中に空気が外に出けだそうとします。そのため鼓膜がおわされたいと感じるのです。いたまを処理するには、あくびをしたり、つばを飲みこんだりするとよいでしょう。

飛行機にぬるるペンキの量はどれくらい？
B747型機（※）の場合、約6002＝ドラム缶3本分のペンキが必要です。これを0.1mmの厚さにぬります。ペンキがかわくと、重さは約200kgくらい、ペンキの量だけでも、大人3人分に乗せていることになります。
※「ジャンボ」といっても軽いのは大型旅客機。

飛行機の値段はいくら？
大型旅客機だと約180億円、新幹線にたとえると、68両分の値段になります。もし、みなさんのおこづかいが1か月で1,000円だとすると、150万年も貯金しなければ買えません。

飛行機の燃料は何？
飛行機の燃料は「ケロシン」という、ストーブで使う灯油とよくています。ケロシンは灯油の中でも、より純度が高い、水分が少ないため、気温が地上よりも50℃も高い空間1万mでも、おおよそ飛行機の燃料になるのです。

飛行機にもカミナリが落ちるの？
飛行機は、先端部分にある気象レーダーで雲や雨をさけて飛んでいますが、どうしてもさけられない場合、飛行機にカミナリが落ちることがあります。しかし、翼に取りつかった放電装置で万全の対策をとっています。
JAXAで働く実験用航空機

セスナ式 680型
（アメリカ製）

飛翔

実験用ヘリコプター

川崎式
BK117C-2型（日本製）

大抵は夢のような夢だった空飛ぶ乗り物、航空機。現在では、私たちのくらしに欠かすことのできない存在になりました。より速く、より遠くへ、より安全に、航空機への夢はまだまだ続きます。未来には、どんな夢をのせた航空機かこの大空を飛んでいるのでしょうか。

セスナ式680型は、アメリカの双発ビジネスジェット機で、日本で使用されている機体です。飛行性能に対象が設定されており、増圧、温度、湿度、位置、応答力等の条件を計測できる各種センサ、データ収集装置を搭載している機体です。現在の航空機の主力となるジェット機に関する技術開発に活用しています。2012年導入。

ドーニエ式
Dornier228-202型（ドイツ製）

MuPAL-αは、ドイツのドーニエ社製の228型機を母機として、JAXAが開発したプライバート・フライ・セパレート運航用データ収集装置を搭載したヘリコプターで、必要な機能を組み込んだ機体です。この機体は、さまざまな空気密度の環境下で飛行することができるのかすらです。実験用ヘリコプターは、航空機をより安全に効率よく運航するための技術開発に活用しています。1988年導入。
飛ばそう！イカ飛行機！
はさみこみの折紙を使ってつくるよ！

1. 中心の部分をつぶす
2. 中心に向かって折る
3. ひらく

4. ひらめく
5. 折り目をつけたままで
6. 高角側を少し長く
7. 中央の部分をすぼめる
8. 三角形の部分を受け取り
9. 三角形の部分を受け取り
10. ひらく

“イカ飛行機”を上手に飛ばすには？

・お面は平らで、折り目が短いもの
・お面の折り紙の線は、折り目が曲がりやすい場所になるように
・折り目が曲がりやすい場所になるように

・折り紙を折った後は、お面の線を上下に軽くカーブさせて
・お面の線を上下に軽くカーブさせて

いかがでしたか？ さらに飛ばしましょう！