独立行政法人宇宙航空研究開発機構の 平成21年度の業務運営に関する計画 (年度計画)

(平成 21 年 4 月 1 日~平成 22 年 3 月 31 日)

平成21年3月31日 制定 平成21年7月23日 変更 平成22年2月26日 変更

独立行政法人宇宙航空研究開発機構

目 次

	序文		1
Ι	. 国民に対して提供するサービスその他の業務の質の向上に関する目標を		
	達成するためにとるべき措置		1
	1. 衛星による宇宙利用	•••••	1
	2. 宇宙科学研究	•••••	4
	3. 宇宙探査	• • • • • • • • • • • • • • • • • • • •	6
	4. 国際宇宙ステーション(ISS)	• • • • • • • • • • • • • • • • • • • •	6
	5. 宇宙輸送	• • • • • • • • • • • • • • • • • • • •	7
	6. 航空科学技術	• • • • • • • • • • • • • • • • • • • •	8
	7. 宇宙航空技術基盤の強化	•••••	9
	8. 教育活動及び人材の交流	•••••	10
	9. 産業界、関係機関及び大学との連携・協力	•••••	11
	10. 国際協力	•••••	12
	11. 情報開示•広報•普及	•••••	13
	12. 受託事業	• • • • • • • • • • • • • • • • • • • •	13
Π	. 業務運営の効率化に関する目標を達成するためにとるべき措置		14
	1. 柔軟かつ効率的な組織運営		14
	2. 業務の合理化・効率化		14
	3. 情報技術の活用		15
	4. 内部統制・ガバナンスの強化		16
Ш	. 予算(人件費の見積りを含む。)、収支計画及び資金計画		17
	1. 予算		17
	2. 収支計画		18
	3. 資金計画		19
IV	. 短期借入金の限度額		20
V	. 重要な財産を譲渡し、又は担保に供しようとするときは、その計画		20
VI	. 剰余金の使途	•••••	20
VII	. その他主務省令で定める業務運営に関する事項		20
	1. 施設・設備に関する事項		20
	2. 人事に関する事項		20
	3. 安全・信頼性に関する事項		21

独立行政法人宇宙航空研究開発機構の平成21年度の業務運営に関する計画 (年度計画)

序文

独立行政法人通則法(平成11年法律第103号)第31条第1項の規定に基づき、独立行政 法人宇宙航空研究開発機構(以下、「機構」という。)の平成21年度の業務運営に関する計画 (年度計画)を以下の通り定める。

- I. 国民に対して提供するサービスその他の業務の質の向上に関する目標を達成するために とるべき措置
- 1. 衛星による宇宙利用
- (1)地球環境観測プログラム
 - (a) 地球環境観測衛星の研究開発 本プログラムに関する衛星の研究開発として以下を実施する。
 - 第1期水循環変動観測衛星(GCOM-W1)の維持設計、プロトフライトモデルの製作試験、及び地上システムの開発
 - 全球降水観測(GPM)/二周波降水レーダ(DPR)の詳細設計、プロトフライトモデルの 製作試験、及び地上システムの開発
 - 第1期気候変動観測衛星(GCOM-C1)の基本設計、エンジニアリングモデルの製作試験、及び地上システムの開発
 - 雲エアロゾル放射観測衛星(EarthCARE)/雲プロファイリングレーダ(CPR)の詳細設計、エンジニアリングモデルの製作試験、及び地上システムの開発
 - 将来の地球環境観測ミッションに向けた観測センサの研究

(b) 衛星による地球環境観測の実施

- NASA との連携により、熱帯降雨観測衛星(TRMM)の後期運用を実施し、降雨に関する観測データを取得する。
- NASA との連携により、地球観測衛星/改良型マイクロ波放射計(AQUA/AMSR-E)の 後期運用を実施し、水蒸気量・海面水温・海氷分布等に関する観測データを取得する。
- 陸域観測技術衛星(ALOS)の後期運用を実施し、植生分布等に関する観測データを取得する。
- 温室効果ガス観測技術衛星(GOSAT)の定常運用を開始し、温室効果ガス(二酸化炭素、メタン)の観測を行う。

これらの観測データを国内外の利用者に提供するとともに、関係機関と連携して、主に気候変動及び水循環に係る衛星データの利用研究を実施し、校正検証によるデータ精度の向上に努めつつ、地球環境問題に対する国際的な取組みに貢献する。

アジア太平洋各国の関係機関と連携して宇宙技術を用いた環境監視(SAFE)の取り組みを進める。

また、東京大学、海洋研究開発機構等との協力によるデータ統合利用研究を継続する。 開発段階の衛星についても、国内外の研究者に対する公募研究の実施や、海外の関係 機関との協力を進めることで、利用研究、利用促進に向けた準備を行う。

(c) 全球地球観測システム(GEOSS)への貢献

衛星による地球環境観測を活用した国際的な取り組みについて、欧米・アジア各国の関係機関、国際機関等との協力を推進する。特に、地球観測衛星委員会(CEOS)の実施計画に基づき、宇宙からの温室効果ガス観測国際委員会及び森林炭素観測の活動を主導する等、GEOSS 構築10年実施計画における主要な役割を果たす。

(2)災害監視・通信プログラム

(a) 陸域観測衛星の研究開発

本プログラムに関する衛星の研究開発として以下を実施する。

- 陸域観測技術衛星2号(ALOS-2)の基本設計、エンジニアリングモデルの製作試験、 及び地上システムの開発
- 陸域観測技術衛星3号(ALOS-3)の研究
- 超低高度衛星技術試験機(SLATS)の研究
- 将来の災害監視・通信ミッションに向けたミッション機器等の研究

(b) ALOS による災害状況把握の実施

ALOS の後期運用を実施するとともに、大規模災害が発生した場合に緊急観測を行い、 国内外の防災機関等のユーザに情報を提供する。

防災利用を促進するために、関係機関及び地方自治体等のユーザと連携して、衛星データの防災利用実証実験を実施し、衛星地形図の整備・提供、地震の評価活動や火山の監視活動に資する地殻変動に関する情報の提供、水害の被害状況に関する情報の提供などを行い、人工衛星による災害状況把握の有効性を実証する。

また、国際災害チャータの要請に対し、ALOS を用いた観測を可能な範囲で実施し、データを提供する。

センチネル・アジアの活動については、アジア・太平洋地域の災害情報の共有化をより一層進めるため、センチネル・アジアSTEP2システムの開発を進める。また、インド等と連携し衛星画像の提供を行うなど、関係機関との協力をより一層推進させる。

(c) 通信衛星による災害通信実験の実施

技術試験衛星W型(ETS-W)基本実験として救難情報の発信・収集等の利用実証を行う。 超高速インターネット衛星(WINDS)基本実験として災害時を想定した被災地からの情報発 信、被災地映像伝送等の利用実証を行うとともに、センチネル・アジア・ウェブサイトへのア クセス検証を行う国際共同通信実験を実施する。

また、災害時の衛星通信の利用実証として、ETS-ឃ及び WINDS を用いた地方自治体等との連携による実証実験を2件以上実施する。

さらに、データ中継技術衛星(DRTS)と ALOS ならびに日本実験棟(JEM)との間で衛星間通信実験を実施し、後期利用段階移行後も災害等に係る観測データ等を取得する。

(3)衛星測位プログラム

(a) 準天頂衛星初号機の開発

準天頂衛星システム計画の第一段階として、関係省庁と共同により準天頂衛星初号機の 衛星システムインテグレーション、プロトフライト試験、及び追跡管制システムの開発を行う。 また、高精度測位実験システム地上系の整備を実施する。技術実証及び運用の準備を行う とともに、必要に応じ、準天頂衛星システムユーザインタフェース仕様書の維持改定を行う。

なお、平成21年度補正予算(第1号)により追加的に措置された交付金については、「経済危機対策」の底力発揮・21世紀型インフラ整備のために措置されたことを認識し、準天頂衛星初号機の開発に充てるものとする。

(b) 衛星測位に係る基礎的·基盤的研究開発

ETS-Wで利用し、衛星測位に係る基礎的技術である高精度軌道決定技術、衛星時刻推定技術の修得のための実証試験を継続し、同技術の蓄積を行う。

(4)衛星の利用促進

ALOS、AMSR-E、TRMM 等の地球観測データについて、気象分野、農林水産分野、地理情報分野等へのデータ提供を行うとともに、大学などの関係機関等と連携した利用研究・実証を通じ、衛星及び観測データの利用分野の拡大を行う。

また、WINDS 及び ETS-哑を用いた、基本実験や総務省がとりまとめる利用実験の支援を通じて、教育分野や医療分野等における通信実験を行うことにより、衛星通信の利用の拡大を行う。

加えて、新たな利用ミッションの候補の検討を行う。

2. 宇宙科学研究

(1)大学共同利用システムを基本とした学術研究

世界の宇宙科学研究実施・振興の中核機関として、研究者の自主性の尊重、その他学術研究の特性に鑑みつつ、引き続き宇宙の進化、太陽系起源・惑星の進化、我々の存在環境、極限状態の物理の理解を目指した宇宙空間からの宇宙物理学及び天文学、太陽系探査による科学研究、宇宙環境を利用した研究及び宇宙開発利用に新しい芽をもたらし、自在な科学観測・探査活動を可能とするための工学研究を推進する。実施する研究テーマに関し、海外から5件以上の協力・連携要請を得ることで、研究の質が国際的レベルであることを示す。

これにより、宇宙の進化、太陽系起源・惑星の進化、我々の存在環境、極限状態の物理の理解や生命科学・物質科学及び凝縮系科学分野における原理・現象の解明、及び自在な科学観測・探査活動を可能とするための技術の確立を目指す。

さらに、研究開発が高い成果を上げていることの証として、成果を国際的な学会、学術誌等 に発表する。

また、宇宙科学における世界のトップサイエンスセンター化に資するため、極めて優れた若手研究者を招聘する。

大学共同利用システムに基づき、全国の大学や研究機関に所属する研究者が参画する次の研究については、研究者数を延べ 400 人以上とし、研究活動の推進と共同利用の一層の拡充を図る。

- 宇宙科学研究本部が行う各プロジェクト等に参画して行う研究
- 本部の教育職職員と特定課題について行う研究
- 本部で所有する施設等を利用して行う研究

大学共同利用システムに基づき、参画する大学等と共同でシンポジウムを20件以上開催し、研究成果の一層の活用と活動の普及を増進する。

(2)宇宙科学研究プロジェクト

(a) 科学衛星の研究開発

本プログラムに関する衛星の研究開発として以下を実施する。

- 金星探査機(PLANET-C)のフライトモデルの製作試験
- 日欧共同の水星探査計画であるベピコロンボ(Bepi Colombo)計画の水星磁気圏周回 衛星(MMO)の詳細設計及びフライトモデルの製作着手
- 電波天文衛星(ASTRO-G)の詳細設計及びエンジニアリングモデルの製作試験
- 小型科学衛星シリーズの研究開発
- 次期国際 X 線天文衛星(ASTRO-H)の基本設計
- 次期赤外線天文衛星(SPICA)の研究

(b) 科学衛星による宇宙科学研究

運用中の科学衛星を用い、以下の宇宙科学研究を行う。

- 磁気圏観測衛星(EXOS-D)を運用し、放射線帯・プラズマ圏及び極域磁気圏の粒子・ 磁場等の直接観測を行う。
- 磁気圏尾部観測衛星(GEOTAIL)を運用し、地球近傍の磁気圏尾部のプラズマの直接 計測等を行う。
- X線天文衛星(ASTRO-E II)を運用し、国際公募により X線によるブラックホール、銀河 団など宇宙の超高温、極限状態の観測を行う。
- 赤外線天文衛星(ASTRO-F)を運用し、赤外線天文観測を継続するとともに赤外線源 カタログの改定、公開を行う。
- 小型高機能科学衛星(INDEX)を運用し、オーロラ現象の解明に寄与するオーロラ観測を行う。
- 太陽観測衛星(SOLAR-B)を運用し、国際コミュニティーに開かれた軌道天文台として 太陽観測を行う。

(c) ISS 搭載機器・小型飛翔体等の開発運用及び宇宙科学データの整備

国際宇宙ステーション(ISS)での宇宙環境を利用した科学研究活動として以下を実施する。

- 結晶成長テーマ、放射線生物学テーマ等の ISS 搭載実験
- 日本実験棟(JEM)船外実験プラットフォーム搭載の全天X線監視装置(MAXI)及び超 伝導サブミリ波サウンダ(SMILES)による科学観測の開始、ならびにデータ利用研究の 実施
- 将来の ISS 等の宇宙環境を利用する宇宙実験実施を目標とした研究課題の育成

観測ロケットを用いた実験・観測機会を提供することを目的に、観測ロケット S-520 の打上げを行うとともに、観測ロケット S-310 の設計及び製作を行う。また、再使用観測ロケットの研究を行う。さらに、大気球を用いた科学観測や工学実験を実施するために必要な飛翔手段の開発・運用を行う。

科学衛星サイエンス及び科学衛星工学のデータベースを運用するとともに、これらのデータベースに関する研究開発を進め、宇宙科学データの効率的な処理、ならびに利用者へのデータ提供の利便性を増進する。

3. 宇宙探査

小惑星探査機(MUSES-C)の地球帰還に向けた運用を継続するとともに、平成 22 年に予定されているカプセル回収の準備を進める。また、月周回衛星(SELENE)の後期運用、落下運用を実施する。併せて SELENE の データを一般公開するとともに、観測運用により得られたデータの解析を実施し、世界最高水準の宇宙科学、探査技術等に関する研究成果を得る。 小型ソーラー電力セイル実証機の飛翔型モデルの製作を行う。

また、国際宇宙探査協働グループ(ISECG)の活動を通じて、国際協力を主軸とする将来の月・惑星探査計画及び宇宙探査システムの検討を行う。SELENE 後継機及び MUSES-C 後継機とそれらへの搭載観測機器・実験機器の研究を実施する。さらに、今後の月・惑星探査データの世界への普及を目的として、探査機の観測データ、調査・検討・解析データ等のデータベース化の検討を行う。

4. 国際宇宙ステーション(ISS)

(1)日本実験棟(JEM)の運用・利用

有人宇宙技術及び宇宙環境利用技術をはじめとする広範な技術の高度化の促進及び国際協力の推進を目的とし、また、ISS/JEM という新たな活動の場を活かし、幅広い利用による社会・経済への還元を目指して、以下を実施する。

(a) JEM の運用

- 船内実験室、船内保管室及びロボットアームの保全補給を含む軌道上運用継続による 実験環境の提供
- 船外実験プラットフォーム及び船外パレットの打上げ準備並びに軌道上初期検証及び 軌道上運用への移行
- ISS 宇宙飛行士に対する JEM の訓練、日本人宇宙飛行士の ISS 組立及び ISS 長期滞在、実験操作、並びに日本人宇宙飛行士候補者への基礎訓練の実施

(b) JEM の利用

- 船内実験室搭載実験ラックの軌道上運用
- 船外実験プラットフォーム搭載実験機器の打上げ準備及び軌道上初期検証並びに軌道上運用への移行
- 国内の利用計画のとりまとめと、それに基づく実験準備
- JEM 第2期利用に向けた搭載実験装置・実験機器の開発
- 産・学・官との連携による科学利用、応用利用、一般利用分野の宇宙実験、及びアジア 諸国との国際協力の拡大につながる利用の促進

(2)宇宙ステーション補給機(HTV)の開発・運用

ISS 共通システム運用経費の我が国の分担義務に相応する物資及び JEM 運用・利用に必要な物資を輸送・補給するとともに、将来の軌道間輸送や有人システムに関する基盤技術の修得を目的として、以下を実施する。

- HTV 技術実証機の打上げ準備、打上げ、及び運用準備、運用管制並びに物資の輸送・補給
- HTV運用機の製作及びHTV運用機打上げ用H-ⅡBロケットの調達並びに物資の搭載 に向けた調整

5. 宇宙輸送

(1) 基幹ロケットの維持・発展

H-ⅡAロケットの安定的な打上げ基盤を確保するため、2段燃焼中振動への抜本的な対策やアビオニクス、モータケース等の枯渇・国産化対応など、H-ⅡAロケットの信頼性、輸送サービスを向上し、運用基盤を維持・強化するシステムの改善・高度化計画を策定する。また、将来の衛星需要等に柔軟に対応する打上げシステムや将来輸送系へ発展し得る宇宙輸送システム共通の技術基盤を構築するための要素技術等の研究開発を、本計画に基づく技術開発と併せて行う。

H-IIBロケットについては、「試験機/射場システム地上総合試験(GTV)」等を実施し、試験機を打ち上げる。

打上げ関連施設・設備の効率的な維持及び運用性改善を行う。

(2)LNG 推進系

官民協力の下、開発を進めてきたGXロケットについて、宇宙開発戦略本部決定に従い、平成21年夏頃までの本格的開発着手に関する判断に向け、第二段に搭載する液化天然ガス (LNG)推進系の技術的な見通しを得るために必要な試験や GX ロケットのシステム検討を進める。

(3)固体ロケットシステム技術の維持・発展

固体ロケットシステム技術の維持・発展方策として、低コストかつ革新的な運用を可能とする固体ロケットのシステム及びサブシステムの基本要求に対して、具体的な仕様の検討を進めるとともに、その実現に必要な要素試作試験などを行う。

6. 航空科学技術

(1) 航空機及び航空エンジンの高度化に資する研究開発

- 低燃費で低騒音な環境適応型高性能小型航空機の研究開発において、民間企業との共同研究等により、実機設計に向けた高性能化技術(空力高性能化・低騒音化技術実証、構造安全技術実証、操縦システム評価技術)及び飛行試験技術の研究開発を行うとともに、型式証明に向けた技術的支援を行う。さらに、環境適合性と安全性の飛躍的向上を目指した機体概念の検討及び要素技術の研究開発を行う。
- 低燃費で低騒音な環境適応型小型航空機用エンジンの研究開発を実施する民間企業との共同研究により、計算流体力学(CFD)によるエンジン設計評価、ターボ要素技術の研究開発、燃焼器開発、エンジン最適制御法の研究開発を引き続き行うとともに、ファン要素技術の研究開発に着手する。また、低 NOx 燃焼技術、低騒音化技術、低 CO2 化技術及びエンジンシステム技術の研究開発を引き続き行う。
- 静粛超音速研究機において、ソニックブーム低減技術等の研究開発を行うとともに、研究機の設計検討を継続し、静粛超音速研究機開発への技術的な目処を得る。また、上記の研究開発活動の一環として国際民間航空機関(ICAO)の航空環境保全委員会からの要請に基づき、引き続きソニックブーム国際基準策定検討に参画するとともに、海外研究機関(NASA等)との共同研究を行う。

(2) 航空輸送の安全及び航空利用の拡大を支える研究開発

- 次世代運航システムの研究開発において、精密曲線進入のための自動着陸アルゴリズム、衛星航法精密進入の信頼性向上アルゴリズム、乱気流最適回避アルゴリズム、低騒音進入経路生成アルゴリズム及び最適運航管理技術の実運用環境での評価用システムの研究開発を行う。また、これらの研究開発によって得られた成果については産業界等への技術提供により成果の利用促進を図る。
- ヒューマンエラー防止技術の研究開発において、運航手順解析システムの成立性検証、 ヒューマンファクタ訓練技術向上を目指してパイロット行動データの収集を行うとともに、ヒューマンエラー防止ツールの運航事業者等のニーズに基づく改良と技術提供を行う。
- 乱気流検知技術の研究開発において、5NM 級ライダーの高高度での飛行実証を行うとともに、旅客機への搭載条件の検討を行う。
- ヘリコプタ騒音低減技術の研究開発において、実大低騒音ロータの詳細設計結果の解析 評価及び構成要素の製造に着手するとともに、多数枚ブレードに適用する騒音低減制御 則の性能向上を図る。
- 無人機を用いた災害情報収集システムの研究開発として、災害監視無人機システムの概念設計を行い、無人機の仕様を明確にするとともに、無人機の運用性、安全性及び信頼性の向上に向けた要素技術開発を行う。

また、公的な機関の要請に基づく航空事故等の調査に関連する協力及び構造耐空性証明の技術基準策定等の航空機の運航安全性の向上・環境適合性の確保等に係る技術支援を 積極的に行う。

7. 宇宙航空技術基盤の強化

(1) 基盤的・先端的技術の強化及びマネジメント

(a) 先端的技術に係わる研究

関係機関や産業界と連携しつつ、将来ミッションの達成に向け、機構内外のニーズや市場の動向等を見据えた研究開発の戦略(技術ロードマップ)を維持改定する。

また、当該技術ロードマップを踏まえ、機構を横断した競争的で透明性、公平性、客観性あるマネジメントにより宇宙航空分野における先行・先端的技術及び基盤的技術の研究を実施する。

宇宙太陽光発電に関し、集光、マイクロ波の送電方向制御、レーザー増幅技術などの研究を行う。

(b) 衛星の信頼性向上

衛星の性能向上や信頼性向上を目的とした軌道上実証機会の確保の一環として、小型 実証衛星(SDS)シリーズの研究開発を行う。また、小型実証衛星1号機(SDS-1)を運用し、 搭載実験機器の実験データの取得・評価を行う。

(c) 重要な機器・部品の確保

我が国の宇宙活動の自律性を確保するため、宇宙機の性能向上・信頼性向上に大きく 影響する機器について、プロジェクトに先立って重点的に研究開発を行う。

国際競争力のある宇宙機の実現を的確にサポートする部品を適正なコストかつ安定的に調達できる仕組みを構築するため、戦略部品の国産化、セカンドソースの確保等の施策を実施する。

(d) スペースデブリへの対策

デブリの観測技術、衝突リスク対策及び軌道環境保全に関する研究を行う。デブリの観測、大型デブリの落下予測、衝突回避解析を適時に実施する。さらに、国際的なデブリ対策の取り組みに貢献する。

(e) 萌芽的研究

機構の果たすべき将来の新たな役割の創造に発展しうる世界最先端の宇宙航空科学技術の萌芽を目的とした研究を実施する。

(f) 技術マネジメント

機構内における効果的・効率的な技術マネジメントとして、専門技術グループとプロジェクトとの連携の推進を行う。また、宇宙機、航空機の設計等に役立てるべく基盤的データの蓄積を行う。さらに、国際的な規格作り等に貢献する。

(2)基盤的な施設・設備の整備

衛星の追跡管制に必要な設備の維持・更新・整備等を実施し、追跡局を一元的に運用する体制を維持するとともに効率的な運用を行う。

また、宇宙開発に必要な環境試験設備の維持及び更新等を行なうとともに環境試験に係る技術の開発を実施する。

航空機開発に必要な風洞、航空エンジン、材料・構造、飛行試験等の大型試験施設・設備について、老朽化等に関する検討・整備・高度運用を行う。

8. 教育活動及び人材の交流

(1) 大学院教育等

宇宙航空分野の人材の裾野を拡大し、能力向上を図るため、以下の協力活動等を通じて外部の人材を育成するとともに、外部との人材交流を促進する。

- 総合研究大学院大学との緊密な連携・協力による大学院教育として宇宙科学専攻を置き、博士課程教育(5年一貫制)を行う。
- 東京大学大学院理学系・工学系研究科との協力による大学院教育を行う。
- 特別共同利用研究員、連携大学院(名古屋大学等)、その他大学の要請に応じた宇宙・ 航空分野における大学院教育への協力を行う。
- 客員研究員、任期付職員(民間企業からの出向を含む)の任用、研修生の受け入れなどの枠組みを活用し、内外の大学、関係機関、産業界等との交流を促進し、大学共同利用システムとして行うものを除き、年500人以上の規模で人材交流を行う。

(2) 青少年への宇宙航空教育

将来の宇宙航空分野の研究者・技術者を育成するとともに、広く青少年の人材育成・人格 形成に貢献するため、以下をはじめとする教育活動を実施するとともに、それぞれの手段を効 果的に組み合わせ、年代に応じた体系的なカリキュラムを構築する。

● 授業支援が効果的に各小・中・高校に波及、拡大することを目指し、各地域の科学館等と連携拠点作りの準備・調整を進め、平成24年度末には全国9ブロック(北海道、東北、関東、北陸・信越、東海、近畿、中国、四国、九州・沖縄)に各1箇所以上の拠点を設置することを目標に、本年度は、うち2ブロック以上において各1箇所以上の拠点を新たに設置する。

- 上記の連携拠点から教材・教育方法等を展開することにより宇宙航空を授業に取り入れる波及連携校の拡大に取り組み、新たに波及連携校を6校以上増やす。
- 宇宙航空を素材にした授業が学校現場で実施されるための支援として、教員研修・教 員養成を500人以上に対し実施する。
- 各地域の科学館等と連携拠点作りの準備及び調整を進め、平成 24 年度末に全国9ブロックに各1箇所以上の連携拠点を設置することを目標に、本年度はうち2ブロック以上において各1箇所以上の連携拠点を新たに設置し、地域に根付いた活動として、当該拠点から実践教育が波及・拡大することを目指す。
- 地域に根付いた自立的な実践教育の普及を目指し、全国で実践教育を実施する宇宙 教育指導者(宇宙教育ボランティア)を 200 名以上育成する。
- より多くの子供たちが参加・体験できる機会の増大を目的に、コズミックカレッジを全国 9 ブロックで 3 回以上、計 80 回以上開催する。

また、青少年宇宙教育活動の拡大を図るため、以下の活動を行う。

- 各種教材の開発・製作を行う。
- 宇宙科学の最先端を担う科学者による講演(宇宙学校)を行う。
- 海外宇宙機関との連携による宇宙教育活動を進め、教育活動における国際協力事業 を推進する。

9. 産業界、関係機関及び大学との連携・協力

我が国の宇宙航空産業の産業基盤及び国際競争力の強化、機構外部のアイデアや技術、 人材を活用した宇宙利用の拡大、機構内部に有する資産の社会への還元を目指した活動と して、以下を実施する。

- 産業連携強化を目的に、従来から続けてきた民間企業や関係機関等との連携の在り方を見直し、宇宙産業の国際競争力強化及び宇宙利用の拡大に向けた情報共有・必要な支援を行う。特に宇宙機器産業、利用産業との連携強化に努める。
- 国際競争力強化のため、民間との連携による産業振興基盤の強化に係る研究を行う。
- 大学等との連携強化による研究開発リソースの拡充や研究開発の質·効率の向上を目的に、連携協力協定等を3件以上締結する。
- 宇宙航空分野の裾野拡大のため、宇宙オープンラボ制度を推進し、企業等との共同研究を実施するとともに、事業化に向けた支援を行う。
- 大学・企業等との共同研究を、大学共同利用システムとして行うものを含め、年度内に 440件以上実施する。
- 国際宇宙ステーションに搭載する生活用品を認証する制度について、前年度の試行運用の評価を行うとともに、今後の制度化について引き続き検討を行う。
- 容易かつ迅速な宇宙実証機会の提供を目的として、PLANET-C 相乗りとして選定された小型副衛星の打上げに向けたインターフェース調整等の支援を行う。

- 特許コーディネータ等の外部専門機関を活用したマッチング活動を取り入れることにより、JAXAからの働きかけによる技術移転契約件数を年7件以上、その他企業からの申し込みを含めた全体のライセンス契約件数を年50件以上とする。
- 施設・設備供用件数を年 50 件以上とする。また、専用ウェブサイトを通じた大型試験施設等の供用に関する情報提供を適時行うことにより利用者の利便性向上を図る。
- JAXA の関西窓口として関西サテライトオフィスを運営し、既に関西に根付いた宇宙活動への支援を継続するとともに、新たな地方の大学等による衛星開発や、新たな中小企業等による宇宙ビジネス参入への支援を行う。

10. 国際協力

地球規模での諸問題の解決、我が国の国際的な地位の向上及び相乗効果の創出を目的として、我が国の宇宙航空分野の自律性を保持しつつ、諸外国の関係機関との相互的かつ協調性のある関係を構築するとともに、特にアジア太平洋地域における我が国のプレゼンスを向上させる。このため、以下をはじめとする施策の実施を通じ、人類共通の課題に挑む多国間の枠組みにおいて主導的役割を果たすとともに、アジア太平洋地域における課題の解決に向け貢献する。

- GEOSS 10 年実施計画への貢献等を通じた地球観測分野における協力
- 国際宇宙ステーション計画に係る参加国との協力
- 月・惑星探査に係る国際協力枠組への積極的参加
- 第 16 回アジア太平洋地域宇宙機関会議(APRSAF)の運営
- センチネル·アジアの取組みを通じたアジア太平洋地域の災害危機管理の課題解決に 向けた貢献
- SAFE の取り組みを通じたアジア太平洋地域の環境監視活動への貢献
- STAR プログラム(APRSAF 衛星)への取り組みを通じた衛星技術分野での、アジア諸 国宇宙機関の人材育成に関する貢献
- APRSAF の枠組みなどを用いた宇宙開発利用の促進及び人材育成支援

また、機構の業務運営に当たっては、我が国が締結した宇宙開発・宇宙利用に係る条約その他の国際約束及び輸出入等国際関係に係る法令等を遵守する。

11. 情報開示・広報・普及

宇宙航空研究開発には多額の公的資金が投入されていることから、分かりやすい形で情報を開示することで説明責任を十分に果たすことを目的に、以下をはじめとする多様な手段を用いた広報活動を展開する。また、成果の国外へのアピールが我が国の国際的なプレゼンスの向上をもたらすことから、海外への情報発信も積極的に行う。

- 査読付論文等を350件以上発表する。
- 公式ウェブサイトのコンテンツ充実を図るとともに、質を向上させるため利用者の声を把握する。サイトへのアクセス数 650 万件/月以上を達成する。また、海外からの関心を高めるために英語版ホームページの充実を図る。
- 事業の透明性を確保するため、定例記者会見を実施する。
- プロジェクトの進捗状況を適時適切に公開し、その意義や成果を広く発信し、国民の理解増進を目指す。
- 対話型・交流型の広報活動としてのタウンミーティングを 10 回以上開催し、国民にとって宇宙航空研究開発をより身近なものとするとともに、今後の業務運営に資するため、 国民からの意見を直接聴取する。
- 多くの国民に宇宙航空研究開発に親しみを持ってもらうため、地方公共団体や学校等の外部機関とも連携し、400回以上の講演を実施する。
- 宇宙航空研究開発に対する理解増進のため、各事業所においては展示内容を計画的に更新し、一般公開、見学者の受け入れを実施する。特に、筑波宇宙センターの展示について、引き続き充実に向けた展示内容・展示方法の検討を行う。
- 平成 20 年度に試行的に開始したモニター制度を引き続き運営し、モニター制度の構築に活かす。
- 成果の国外へのアピールが我が国の国際的なプレゼンスの向上をもたらすことから、 英語版広報ツールの充実を図り、海外駐在員事務所や在外公館などとの連携を進め、 海外への情報発信を積極的に行う。

12. 受託事業

政府等からの受託に基づく事業を確実に実施する。

Ⅱ.業務運営の効率化に関する目標を達成するためにとるべき措置

1. 柔軟かつ効率的な組織運営

宇宙航空研究開発の中核機関としての役割を果たすため、理事長のリーダーシップの下、研究能力、技術能力の向上、及び事業企画能力を含む経営・管理能力の強化に取り組む。

また、柔軟かつ機動的な業務執行を行うため、本部長が責任と裁量権を有する組織を構築するとともに、業務運営の効率を高くするためにプログラムマネージャ、プロジェクトマネージャ、研究統括など、業務に応じた統括責任者を置き、ミッション実施機能と専門技術研究機能との連携を目指した体制・仕組み作りを進め、組織横断的に事業を実施する。

2. 業務の合理化・効率化

(1)経費の合理化・効率化

管理業務改革のための具体的指針に従い、東京事務所の一部移転のため一時的に増額となる分を除き、一般管理費(人件費を含む。なお、公租公課を除く。)を平成19年度に対し削減する。また、新規に追加される業務、拡充業務等を除くその他の事業費については平成19年度と比較して概ね2%削減を図る。

その一環として、東京事務所等について、管理及び経費の効率化の観点から、関係府省等との調整部門等の現在地に置く必要がある部門以外のものを調布等に移転する。また、国の資産債務改革の趣旨及びこれを踏まえた国による所要の条件整備に基づき、野木レーダーステーションについて売却に向けた努力を継続する等、遊休資産の処分等を進める。

(2) 人件費の合理化・効率化

「行政改革の重要方針」(平成 17 年 12 月 24 日閣議決定)及び「簡素で効率的な政府を実現するための行政改革の推進に関する法律」(平成 18 年法律第 47 号)において削減対象とされた人件費については、平成 21 年度分は平成 17 年度と比較し、概ね4%削減する。ただし、今後の人事院勧告を踏まえた給与改定分、及び、以下により雇用される任期付職員の人件費については、削減対象から除く。

- 競争的研究資金または受託研究もしくは共同研究のための民間からの外部資金により 雇用される任期付職員
- 国からの委託費及び補助金により雇用される任期付研究者
- 運営費交付金により雇用される任期付研究者のうち、国策上重要な研究課題(第三期科学技術基本計画(平成 18 年 3 月 28 日閣議決定)において指定されている戦略重点科学技術をいう。)に従事する者及び若手研究者(平成 17 年度末において 37 歳以下の研究者をいう。)

また、役職員については、「独立行政法人整理合理化計画」(平成 19 年 12 月 24 日閣議決定)を踏まえ、その業績及び勤務成績等を一層反映させる。

理事長の報酬については、各府省事務次官の給与の範囲内とする。役員の報酬については、個人情報の保護に留意しつつ、個別の額を公表する。

職員の給与水準については、機構の業務を遂行する上で必要となる事務・技術職員の資質、人員配置、年齢構成等を十分に考慮した上で、国家公務員における組織区分別、人員構成、役職区分、在職地域、学歴等を検証するとともに、類似の業務を行っている民間企業との比較等を行った上で、国民の理解を得られるか検討を行う。また、職員の給与について、平成22年度において事務・技術職員のラスパイレス指数が120以下となる施策を進めていく。

3. 情報技術の活用

情報技術及び情報システムを用いて業務の効率化、確実化及び一層の信頼性向上を図るため、下記を実施する。

(1)プロジェクト支援の情報化

- 宇宙輸送系などのプロジェクトにおける研究開発プロセスの情報化を引き続き実施する。
- 数値シミュレーション技術の活用によりロケットエンジンなどプロジェクトの課題解決支援を実施する。

(2)業務運営支援の情報化

平成 19 年度に策定・公表した「財務会計業務及び管理業務の業務・システム最適化計画」 を引き続き実施する。

(3)情報インフラの整備・運用

IP 電話の整備に着手するなど、引き続き IP 技術を用いセキュリティを確保したコミュニケーション環境を段階的に構築する。

また、計算工学技術利用を支えるスーパーコンピュータの運用を行う。

(4)情報の蓄積と活用

機構が有する技術情報などの共有環境について、一層の高度化を図るためのシステム構築に着手する。

4. 内部統制・ガバナンスの強化

(1)内部統制・ガバナンス強化のための体制整備

内部統制の体制については、情報セキュリティを考慮しつつ、これまでの個別整備を踏まえて体系的に整理した具体的要領に基づき、リスクマネジメントを実施するとともにリスクの縮減活動の評価を実施することにより内部統制の強化を図る。また、機構の業務及びそのマネジメントに関し、引き続き機構公開ホームページを通じて、また、国内各地で機構が開催するタウンミーティング、シンポジウムなどの機会を捉え、国民の意見を聞く。

(2)内部評価及び外部評価の実施

内部評価及び外部評価を実施して業務の改善等に努める。

内部評価にあたっては社会情勢、社会的ニーズ、経済的観点等の要素も考慮して、必要性、 有効性を見極めた上で、事業の妥当性を評価する。評価の結果は、事業計画の見直し等に 的確にフィードバックする。特に、大学共同利用システムを基本とする宇宙科学研究について は、外部研究者等を含む委員会評価を行い、業務運営に反映する。

(3)プロジェクト管理

プロジェクト移行前の研究段階において経営判断の下で適切なリソース投入を行い、十分な技術的リスクの低減(フロントローディング)を実施する。また、プロジェクトへの移行に際しては、各部門から独立した評価組織における客観的評価を含め、その目的と意義及び技術開発内容、リスク、資金、スケジュールなどについて、経営の観点から判断を行う。プロジェクト移行後は、経営層による定期的なプロジェクトの進捗状況の確認等を通じて、コストの増大を厳しく監視し、計画の大幅な見直しや中止をも含めた厳格なプロジェクト管理を行う。また、計画の見直しや中止が生じた場合には、経営層における責任を明確化するとともに、原因の究明と再発防止を図る。

なお、宇宙開発委員会等が行う第三者評価の結果を的確にフィードバックする。

(4)契約の適正化

「独立行政法人整理合理化計画」を踏まえ、機構の締結する契約については、真にやむを得ないものを除き、原則として一般競争入札等によることとする。なお、一般競争入札等により契約を締結する場合であっても、真に競争性、透明性が確保されるよう留意する。また、随意契約見直し計画の実施状況を含む入札及び契約の適正な実施については、監事による監査を受けるとともに、実施状況をウェブサイトにて公表する。

Ⅲ. 予算(人件費の見積りを含む。)、収支計画及び資金計画

1. 予算

平成 21 年度予算

(単位:百万円)

区別	金額
収入	
運営費交付金	143, 414
うち補正予算による追加	3, 711
施設整備費補助金	8, 074
国際宇宙ステーション開発費補助金	35, 671
地球観測衛星開発費補助金	16, 881
受託収入	49, 234
その他の収入	1, 000
計	254, 274
支出	
一般管理費	7, 330
事業費	137, 084
うち準天頂衛星初号期の開発加速	3, 711
施設整備費補助金経費	8, 074
国際宇宙ステーション開発費補助金経費	35, 671
地球観測衛星開発費補助金経費	16, 881
受託経費	49, 234
計	254, 274

- [注1] 各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。
- [注2]運営費交付金収入及び事業費には、平成 21 年度補正予算(第 1 号)により措置された「経済危機対策」の底力発揮・21 世紀型インフラ整備のための準天頂衛星初号機開発に係る事業費が含まれている。

2. 収支計画

平成 21 年度収支計画

(単位:百万円)

区別	金額
費用の部	
経常費用	246, 799
事業費	175, 481
一般管理費	4, 485
受託費	21, 423
減価償却費	45, 410
財務費用	78
臨時損失	0
収益の部	
運営費交付金収益	96, 075
補助金収益	38, 386
受託収入	21, 423
その他の収入	1, 000
資産見返負債戻入	54, 153
臨時利益	0
税引前当期純損失	35, 841
法人税、住民税及び事業税	23
当期純損失	35, 864
前中期目標期間繰越積立金取崩額	14, 590
目的積立金取崩額	_
総損失	21, 274

[注1]厚生年金基金の積立不足額については、科学技術厚生年金基金において 回復計画を策定し、給付の削減、掛金の引き上げ等の解消方法を検討した 上で、必要な場合は、人件費の範囲内で特別掛金を加算し、その解消を図る こととしている。

[注2]各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。

3. 資金計画

平成 21 年度資金計画

(単位:百万円)

区別	金額
資金支出	
業務活動による支出	203, 359
投資活動による支出	48, 713
うち補正予算による追加	3, 711
財務活動による支出	1, 712
次年度への繰越金	19, 870
資金収入	
業務活動による収入	246, 435
うち補正予算による追加	3, 711
運営費交付金による収入	143, 414
うち補正予算による追加	3, 711
補助金収入	52, 551
受託収入	49, 234
その他の収入	1, 235
投資活動による収入	
施設整備費による収入	8, 074
財務活動による収入	0
前年度よりの繰越金	19, 146

[注] 各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。

Ⅳ. 短期借入金の限度額

短期借入金の限度額は、305億円とする。短期借入金が想定される事態としては、運営費 交付金の受け入れに遅延等が生じた場合である。

V. 重要な財産を譲渡し、又は担保に供しようとするときは、その計画

なし

Ⅵ. 剰余金の使涂

機構の実施する業務の充実、所有施設の改修、職員教育等の充実に充てる。

- Ⅲ. その他主務省令で定める業務運営に関する事項
- 1. 施設・設備に関する事項

以下に示す施設・設備の整備・老朽化更新等を重点的に実施する。

- (1)セキュリティ対策施設設備の整備
- (2)施設設備の整備・改修(宇宙輸送、追跡管制、宇宙利用推進、技術研究)
- (3) 用地の取得(種子島宇宙センター、筑波宇宙センター)
- (4)施設設備の老朽化更新等(宇宙輸送、追跡管制、技術研究、宇宙科学研究、共通施設設備)

2. 人事に関する計画

以下をはじめとする人事制度及び研修制度の整備を行う。

- (1)人材育成委員会を運営し、キャリアパスの設計、職員に対するヒアリングの充実、外部人 材の登用及び研修の充実等、人材のマネジメントに関して恒常的に改善を図る。
- (2)プロジェクト管理能力、システムズ工学能力、専門技術・基礎研究能力、及び事務管理系能力等の知識・能力について、平成 24 年度までに全職員がいずれかの知識・能力の認証を受けることを目標に、機構内認証制度の設定と施行準備を行う。

また、円滑な業務遂行を行うため、以下の措置を講じる。

- 幅広い業務に対応するため、組織横断的かつ弾力的な人材配置を図る。
- 人材育成、研究交流等の弾力的な推進に対応するため、任期付研究員の活用を図る。

3. 安全・信頼性に関する事項

ミッションの喪失の防止及び品質マネジメントシステムの第三者審査または内部監査における指摘事項の低減を目指し、次の通り品質保証活動を展開する。なお、万一ミッションの完全な喪失が生じた場合には、経営層における責任を明確化するとともに、原因の究明と再発防止を図る。

品質マネジメントシステムを確実に運用し、ISO9001の認証を維持するともに継続的な改善活動を行う。また、宇宙技術の民間移管やプライム契約方式に対応し、公的規格要求を取り入れた安全・信頼性要求を策定し、推進する。

安全・信頼性教育・訓練を継続的に行うと共に、機構全体に自らが安全・ミッション保証活動の主体者であるという意識向上に資する資格認定制度を策定し、試行する。

機構全体の安全・信頼性に係る共通技術データベースの充実、技術標準・技術基準の維持・改訂及びソフトウェア品質向上について、実行計画にもとづき作業を継続する。

また、打上げに関して、国際約束、法令及び宇宙開発委員会が策定する指針等に従い、安全審査委員会を中心に安全確保を図る。

以上