

H-IIBロケット試験機 解説資料

宇宙航空研究開発機構 三菱重工業 株式会社

はじめに

■宇宙輸送システムに係る国家政策

H-IIBロケットは、H-IIAロケットとともに「我が国が必要な時に、独自に宇宙空間に必要な人工衛星等を輸送する能力を保持し、世界最高水準の基幹ロケットを確立・維持し、自律的な宇宙輸送システムを確立する。」として、政府により国家基幹技術として、重点的に推進する基幹ロケットと位置付けられている。

- ■HーIIBロケット開発の目的
 - ◆国際宇宙ステーションへの輸送手段としての 宇宙ステーション補給機(HTV)打上げ
 - ◆H-IIAロケットも合わせ<u>多様な打上げ能力に対応</u> することによる国際競争力の確保

JAXAと三菱重工業㈱が共同で開発中

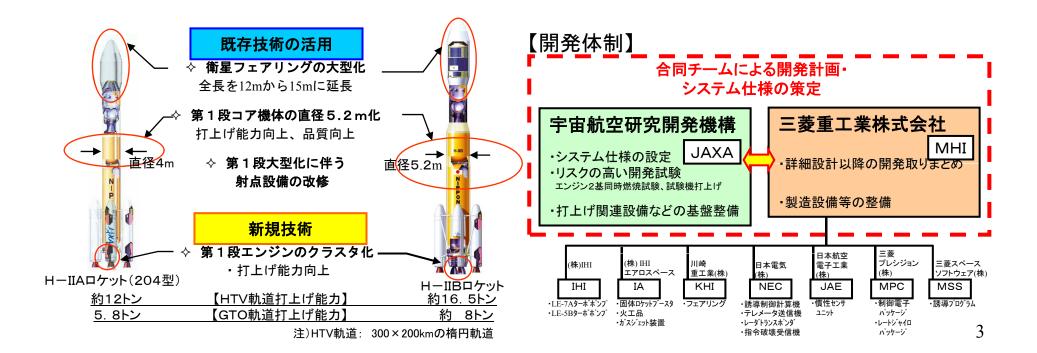
- ■開発方針
 - ◆ H-IIAロケットで培った技術を最大限活用
 - ◆ 低コスト、低リスク、短期間での開発

H-IIBロケットの開発経緯

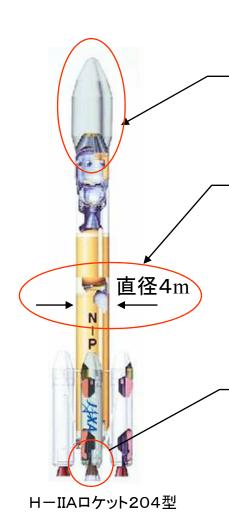
■開発経緯

- (1)平成8年8月:「計画調整部会調査審議結果」(宇宙開発委員会) 宇宙ステーション補給システム(HTV)及び3トン級静止衛星の打ち上げ能力を持つ試験機(H-IIA 増強型)の開発に着手。
- (2)平成14年6月:「今後の宇宙開発利用に関する取組みの基本について」(総合科学技術会議) 「我が国の宇宙開発利用の目標と方向性」(宇宙開発委員会) H-IIA標準型以上の能力を持つ輸送系(H-IIA増強型)を開発する場合には、H-IIA標準型を基本 に<u>民間に主体性を持たせた官民共同開発を行う</u>。
- (3)平成15年4月:「H-IIA民営化作業チーム最終報告」(文部科学省研究開発局) 開発の進め方として、<u>民間を主体とした開発プロセス</u>を採用することとした。また、開発後の役割 分担については、H-IIAロケット民間移管後の役割分担に準拠。
- (4)平成15年8月:「H-IIAロケット輸送能力向上に係る評価結果」 (宇宙開発委員会計画・評価部会) HTVの設計進捗によりHTV軌道への<u>打上げ能力要求が当初の 15トンから16.5トン</u>と変更されたこと及び打上げサービス事業の 競争力強化として民間の要求(静止トランスファー軌道へ8トン 程度)を満足する形態のトレードオフを実施。H-IIA増強型から H-IIAロケット能力向上型への形態変更(右図)で開発を進める ことは適切と判断。

(5)平成17年9月:民間の主体性を重視した官民共同開発の枠組みについて、<u>宇宙航空研究開発機</u> 構と三菱重工業(株)との間で基本協定を締結。


H-IIBロケットの概要

- ■H-IIAロケットの技術を活用し、官民双方のニーズを満たす大型ロケット。
 - ◆ 官のニーズ: 宇宙ステーション補給機(HTV)の打上げに対応
 - ○国際宇宙ステーション(日本実験棟「きぼう」を含む)への物資輸送
 - ○国際約束で分担している国際宇宙ステーションへの補給義務の履行
 - ○2009年から2015年に毎年1機を打上げ(計7機)
 - ◆ 民のニーズ: 国際競争力の確保
 - 〇静止トランスファー軌道へ投入する衛星6トン超級の衛星需要への対応
 - 〇中型衛星の2機同時打上げによる打上げ価格の低減

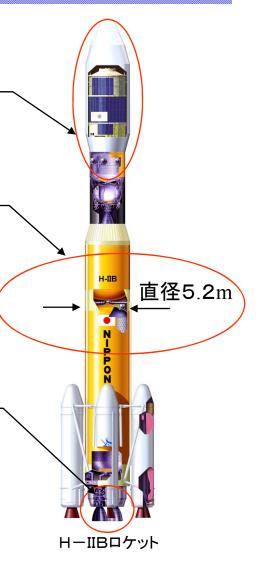

宇宙ステーション補給機(HTV)

H-IIAからの主要変更点

◇衛星フェアリングの大型化

HTVを搭載するため、直径は変えず、全長を 12mから15mに延長

◆第1段コア機体の直径5.2m化

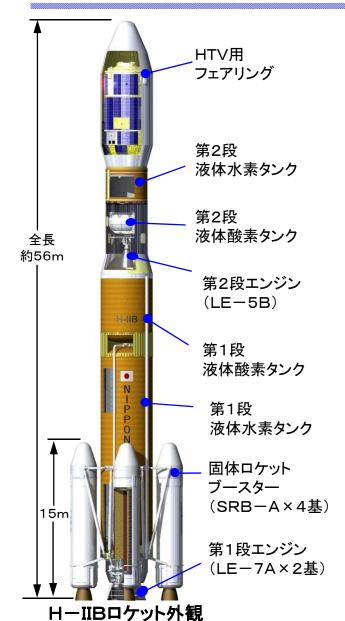

- ・打上げ能力向上のため推進薬量を1.7倍に
- ・品質・自在性向上のため、推進薬タンク前後 のドーム部(鏡板)を海外調達から国産化
- ・品質向上のためタンクの溶接方式を摩擦攪拌 接合方式(FSW)に変更(従来はTIG溶接)

◇第1段エンジン(LE-7A)のクラスタ化

・打上げ能力向上のため、エンジンを2基束ねることにより推進力を増強

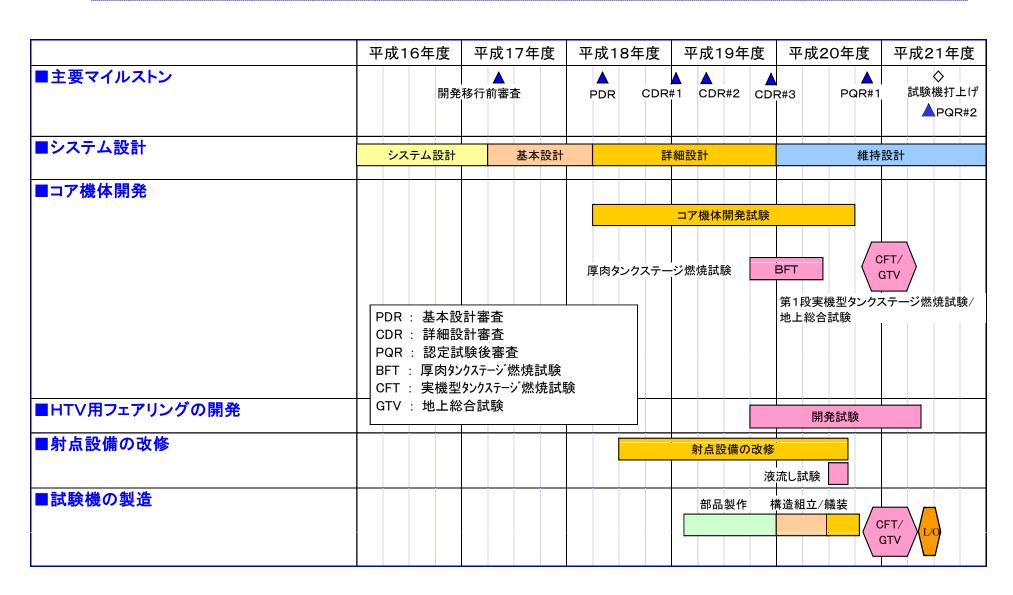

♦射点設備の改修

・機体の5.2m化、フェアリング大型化およびエンジンのクラスタ化に対応した改修



H-IIBロケットの主要諸元

この星に、たしかな未来を



	HーIIBロケット	H-IIAロケット 204型(参考)	備考
全長 全備質量	約56m 約530℃	約53m 約445♭>	ペイロード 質量含まず
フェアリング 名称 直径 長さ	5S一H型 5. 1m 15m	5S型/4S型 5. 1m/4m 12m/12m	
第2段 タンク直径 推進薬質量 エンジン 推力 比推力	4m 16. 7 ^ト > LE−5B 137KN 448秒	4m 16. 7ト LE-5B 137KN 448秒	H-IIA/B 共通 真空中
第1段 タンク直径 推進薬質量 エンジン 推力 比推力	5. 2m 約176 ^ト シ LE-7A×2基 1098KN×2 440秒	4m 約100℃ LE-7A×1基 1098KN 440秒	真空中
SRB-A 推進薬質量 装着基数	約66½/基 4基	約66½/基 4基	H-IIA/B 共通

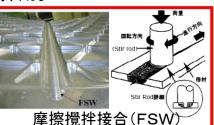
開発スケジュール

構造系の開発

■構造系の概要

以下のとおり、1段推進薬タンク、エンジン部、段間部、エンジンカバー等の開発を行った。

【第2段構造】


•H-IIA用をベースに外板部(2段水素タンク、前 方構造、後方構造)を一部補強。


【分離アクチュエータ】

•H-IIA用スプリングの2段直列結合方式。

【第1段推進薬タンク】

- •シリンダはアルミ合金製 アイソグリッド構造。
- •ドームは一体スピニング 成型で国産化。
- ●摩擦攪拌接合(FSW)を 採用。

スピニング成型ドーム

【エンジン部】

•アルミ合金製 鍛造材削り出し リブ付パネル構造。

【段間部シリンダ】

・段間部の補強、長さ短縮。

【段間部アダプタ】

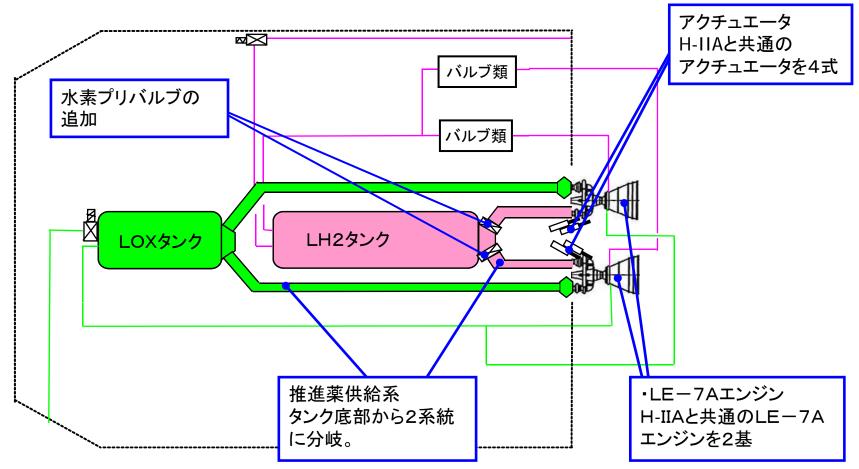
- ◆円錐台形状のアルミ合金製 セミモノコック構造。
- •機体内側にストリンガを配置。
- 上端部にキックフォースフレーム を配置。

【中央部】

•アルミ合金製 削り出しリブ付 パネル構造。

【エンジンカバー】

- •エンジン2基をまとめて 覆う楕円形状。
- •アルミ合金製 セミモノコック構造。



推進系の開発

- H-IIB第1段推進系の概要
 - ◆打上げ能力向上のためLE-7Aエンジンを2基クラスタ化して推進力を増強
 - ◆エンジン2基に対し、独立した推進薬供給配管を適用し、開発リスクを低減
 - ◆バルブ/アクチュエータ等のコンポーネントは極力HーIIAと共用

推進系の開発(燃焼試験結果)

この星に、たしかな未来を

厚肉タンクステージ燃焼試験実施状況(エンジン部)

■厚肉タンク人ナーン燃焼試験(BFT:計8回、353秒)
及び第1段実機型タンクステージ燃焼試験(CFT:計
2回、160秒)を行い、所定のデータを取得した。

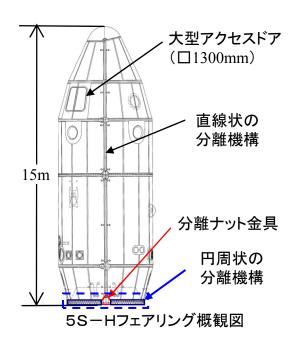
	試験日時	試験回数	最大 燃焼時間	合計 時間
BFT 第1シリーズ	2008年3月~4月	4回	53 秒	159 秒
BFT 第2シリーズ	2008年6月~10月	4回	55 秒	194 秒
CFT #1	2009年4月2日	10	10 和	少
CFT #2	2009年4月22日	10	150 7	砂

厚肉タンクステージ燃焼試験実施状況(全景)

第1段実機型タンクステージ燃焼試験実施状況(全景)

フェアリングの開発

■フェアリングの概要


- ◆これまでで最大のペイロードである HTVに対応するために、HーIIAロケットで 用いているフェアリング(5S型)を3m伸ばしたHTV用フェアリング(5SーH型) を開発。
- ◆大型のアクセスドアを設け、打上げ前にフェアリング内のHTVにアクセスできる 構造とした。

5S-Hフェアリング 強度試験供試体

5S-Hフェアリング 分離放てき試験

射点設備の開発

■射点設備の概要

HーIIBロケットの打上げに対応するため、以下のとおり、射点設備の改修整備を行った。

第2衛星フェアリング組立棟 (SFA2)の拡張

HTV整備に対応

電気・誘導系設備、 発射管制設備の改修

H-IIBシステムに対応

整備組立棟(VAB)の改修 機体大型化に対応して

VAB2側の床・周辺設備を改修

フェアリング運搬台車の改修

フェアリング大型化に対応

移動発射台(ML3)の改修

機体大型化に対応、音響低減のための 上部デッキ注水設備を追加

<u>第2射点(LP2)の改修</u>

音響低減設備を増設、機体全長 の増加に対応して避雷塔延長

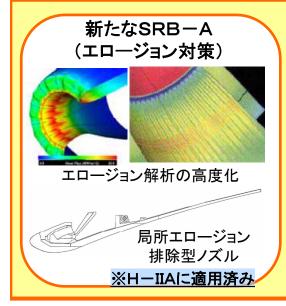
煙道部注水

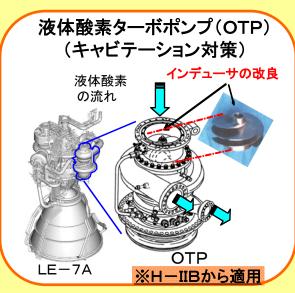
機体空調設備の改修

機体大型化に対応した能力増強

ML運搬台車の改修

機体大型化に対応した補強





信頼性向上に向けた取組み

■信頼性向上プログラムの成果およびHーIIAの課題で施した対策をHーIIBに適用。

●冗長機器の空間冗長 (H-IIA・F6反映)

冗長系を有するラインは、別々のシステムトンネルへ 艤装、機器とのインタフェース点も極力分離した。

●ワイヤハーネスの保護

<u>(HーIIA・F11反映)</u>

ワイヤハーネス保護方針を設定。

- ・作業者のアクセスが多い箇所は極力配線しない。
- ・3次元図で、構造・配管とのクリアランスが規定値以上を確認。 など

※H-IIBで適用範囲拡大

プログラムの成果

各号機の主要課

CFT/GTV

- H-IIB試験機と射点/射場設備を使用し、以下の確認を行った。
- (1)第1段実機型タンクステージ燃焼試験: CFT(Captive Firing Test)
 - ①実機タンクを用いた1段推進系システムの総合確認
 - ②コア機体/設備インタフェース確認

〇極低温点検(F-0) :着火直前までの推進薬充填等のオペレーションを確認。

○燃焼試験(T-0) :エンジンを着火させ、短秒時(10秒)、中秒時(約150秒)の試験

を実施し、コア機体/設備システムを確認。

(2) 地上総合試験: GTV(Ground Test Vehicle)

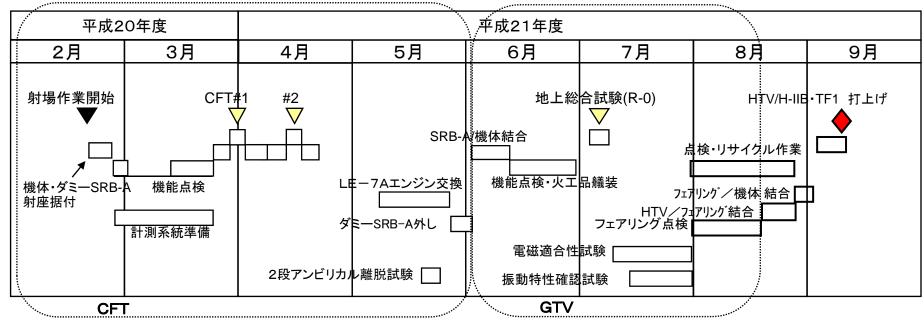
- ①機体と射点設備を組合せて、打上げまでの作業性および手順の確認
- ②機体/設備インタフェース最終確認
- ③射場システム(地上局および飛行安全システム)とのインタフェース確認
- ④宇宙ステーション補給機(HTV)打上げ時刻設定手順の確認

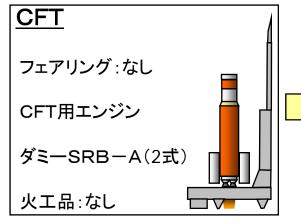
○射場整備作業 :実機SRB-A、実機火工品及び実機エンジンの搭載を含む、 射場整備作業手順の確認。

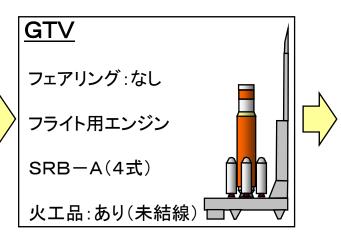
<u>○カウントダウン作業リハーサル(R-0)</u>:打上げ当日と同様の作業を着火直前まで 実施し、作業性および手順、機体/設備及び地上局等とのインタフェースを確認。

(3)特別点検

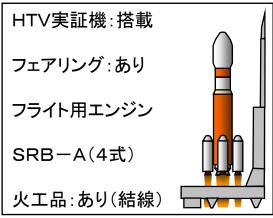
- ①フェアリングを除く全段組立て状態での技術データ取得
- ②フェアリング結合作業性確認


<u>○技術データ取得項目</u>:電磁適合性(EMC)試験、振動特性確認試験 2段アンビリカル離脱試験、フェアリング結合作業性確認 など


射場スケジュール



■ スケジュール



■ 試験コンフィギュレーション

フライトコンフィギュレーション

H-IIB試験機の打上げ目的

●ミッション

「宇宙ステーション補給機(HTV:H-II Transfer Vehicle)技術 実証機を楕円軌道に投入する。

●打上げ予定日と打上げ時刻

打上げ予定日: 平成21年9月11日(金)

打上げ時刻:午前2時4分頃(※)

※最新の国際宇宙ステーションの軌道により決定する。

●投入軌道

高度 : 200km/300km

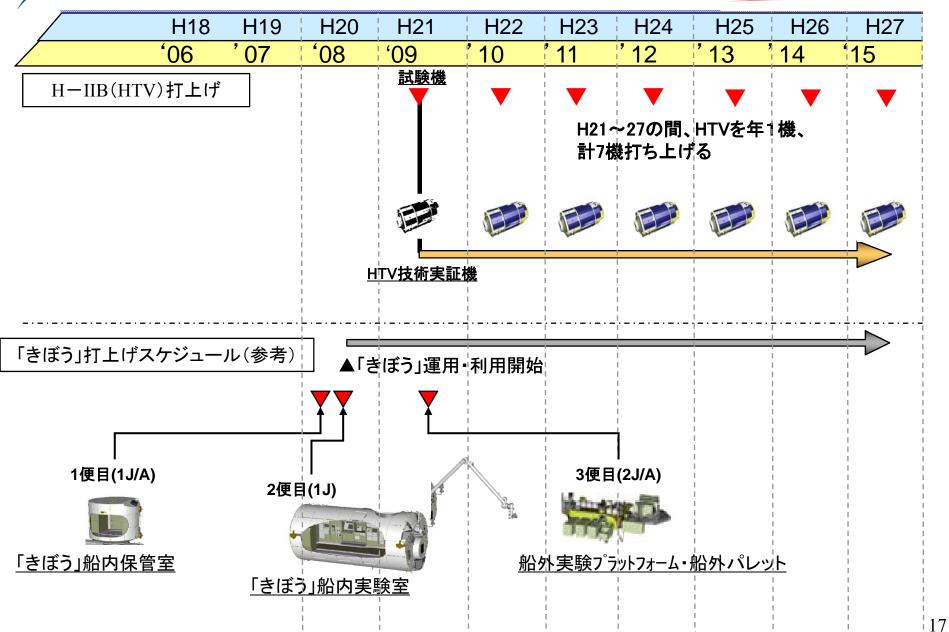
軌道傾斜角 : 51.6度

周期 : 約90分

★★A H-IIB試験機打上げシーケンス ★三菱重工

第2段エンジン推力 立ち上がり

第2段エンジン 停止指令


HTV分離

イベント	経過時間 (計画値)	
リフトオフ	0分	0秒
SRB-A燃焼停止	1分	54秒
SRB-A第1ペア分離	2分	4秒
SRB-A第2ペア分離	2分	7秒
フェアリング分離	3分	40秒
第1段エンジン燃焼停止	5分	47秒
第1段・第2段分離	5分	54秒
第2段エンジン始動	6分	1秒
第2段エンジン燃焼停止	14分	20秒
HTV 技術実証機 分離	15分	11秒

打上げスケジュール(HTV)

略語集

HTV	H-II Transfer Vehicle	宇宙ステーション補給機
SRB-A	Solid Rocket Booster	固体ロケットブースタ
FSW	Friction Stir Welding	摩擦攪拌接合
TIG	Tungsten Inert Gas (Welding Method)	TIG溶接
EMC	Electromagnetic Compatibility	電磁適合性
PDR	Preliminary Design Review	基本設計審査
CDR	Critical Design Review	詳細設計審査
PQR	Post Qualification Review	開発完了審査
BFT	Battleship Firing Test	厚肉タンクステージ燃焼試験
CFT	Captive Firing Test	実機型タンクステージ燃焼試験
GTV	Ground Test Vehicle	地上総合試験
SFA2	No2 Spacecraft and Fairing Assembly Building	第2衛星フェアリング組立棟
LP2	Launch pad No.2	第2射点
VAB	Vehicle Assembly Building	大型ロケット組立棟
ML	Mobile Launcher	移動発射台
LOX	Liquid Oxygen	液体酸素
LH2	Liquid Hydrogen	液体水素
OTP	Oxidizer Turbopump	液体酸素ターボポンプ
L/V	Launch Vehicle	衛星打上げ用ロケット