調查8-1-2 添付資料

環境観測技術衛星(ADEOS-)「みどり」運用異常 に関する機械的挙動の検討状況について(その2)

図表集

平成 15 年 12 月 24 日

独立行政法人 宇宙航空研究開発機構

図2-1 太陽電池パドルの主要構成要素の説明

図2-3 テンションコントロール機構動作概念図

ねじり1次モード

(注)変形を拡大表示している。

固有振動数		パドル各部位の変形	変形量(軌道上評価結果)	
解析値(公差込み) 0.083 ~ 0.11 Hz	<u>軌道上評価結果</u> 0.088 Hz	 ブランケット中央部がブランケット長手軸(Y 軸)廻りにねじれるモード。 マスト、ブームのねじれはブランケットと比較して小さく、ブランケットの振動が支配的であるため、衛星本体の動きは他の衛星振動モード時と比較して小さい。 	 ①ブランケット中央のねじれ角 約2度(縁での変位は約46mm) ②衛星本体の姿勢角変動 約0.002 度 	

図3-1(1/5) 太陽電池パドル主要振動モード(ねじり1次モード)

固有振動数		パドル各部位の変形	変形量(軌道上評価結果)	
解析値(公差込み)	軌道上評価結果	・ ブーム、マスト、ブランケットともにパドル面外方	①PDM 軸心方向*からのマスト先端変位	
0.089 ~ 0.13 Hz	0.11 Hz	向に振動するモード。 ・ マストとブランケットが同位相で変形する。 ・ 衛星本体はマストと逆向きに回転する。	約 2.2mm ②ブランケット変位 約 1.2mm ③衛星本体の姿勢角変動 約 0.005 度	

*:パドルと衛星本体との相対変位の基準。

図3-1(2/5) 太陽電池パドル主要振動モード(面外1次モード)

面内1次モード

(注)変形を拡大表示している。

固有振動数		パドル各部位の変形	変形量(軌道上評価結果)	
解析値(公差込み)	軌道上評価結果	・ ブームの回転ヒンジ廻りのパドル面内方向に振	①PDM 軸心方向*からのマスト先端変位	
0.097 ~ 0.15 Hz	0.13 Hz	動するモード ・ マスト、ブランケットの変形量は小さい。 ・ 衛星本体はマストと逆向きに回転する。	約 3.5mm ②衛星本体の姿勢角変動 約 0.007 度	

*:パドルと衛星本体との相対変位の基準。

図3-1(3/5) 太陽電池パドル主要振動モード(面内1次モード)

面外2次モード

(注)変形を拡大表示している。

固有振動数		パドル各部位の変形	変形量(軌道上評価結果)	
照けて 解析値(公差込み) 0.12 ~ 0.17 Hz	軌道上評価結果 0.14 Hz	 ・ ブーム、マスト、ブランケットともにパドル面外方向に振動するモード。 ・ マスト、ブランケットが逆位相で変形する。 ・ 衛星本体はマストと逆向きに回転する。 	 ②が呈(4)に旦上計(副相末) ①PDM 軸心方向*からのマスト先端変位 約 1.2mm ②ブランケット変位 約 2.1mm ③衛星本体の姿勢角変動 	
			約 0.0027 度	

*:パドルと衛星本体との相対変位の基準。

図3-1(4/5) 太陽電池パドル主要振動モード(面外2次モード)

面外3次モード

(注)変形を拡大表示している。

固有振動数	パドル各部位の変形	変形量(軌道上評価結果)	
解析値(公差込み) 軌道上評価結果 ・	・ ブーム、マスト、ブランケットともにパドル面外方	①PDM 軸心方向*からのマスト先端変位	
0.19 ~ 0.25 Hz 0.23 Hz	向に振動するモード。 ・マストの変形は小さい。 ・ブランケット先端部はマストと逆位相、ブランケットの衛星側の部分は同位相で変形する。	約 0.6mm 以下 ②衛星本体の姿勢角変動 約 0.0013 度	

*:パドルと衛星本体との相対変位の基準。

図3-1(5/5) 太陽電池パドル主要振動モード(面外3次モード)

	•	-	(Ц-)
			(112)

<u>図3-2 パドル固有振動数長期トレンド</u>

図4-1 太陽電池パドルのヒンジ構成

(注) ブランケット同士は互いに剛性が同じであるので、ヒンジ周辺の微小な変位により荷重が分散されるのに対し、コンテナベースとの接合部はコンテナベースの剛性がブランケットより大きいため、荷 重集中がブランケット同士より大きくなる。

図4-3 20Nスラスタ噴射時のVMS画像

(2002/12/23 第1回面外制御)

図5-1 軌道上ストロークと打ち上げ前予測

(注) パドルアレイトリム

1周回に1回、パドル追尾用太陽センサ(SPSS)の信号を用いて、太陽電池パドルの 太陽追尾誤差を最小にする動作。

(注) CDR時点の解析結果を示す。衛星質量特性、面内1次モードの剛性を 見直し前の解析結果であることから絶対値としては図3-2を参照のこと。

図5-2 TCM張力に対する固有振動数の変化