

温室効果ガス観測技術衛星(GOSAT)—「いぶき」

GOSAT: Greenhouse Gases Observing Satellite "IBUKI"

人間の活動により大気中に排出された二酸化炭素、メタン などの温室効果ガスが原因となって地球温暖化が進み、平均 気温や平均海面が上昇していること、また、気候システムに変 化が起こっていることが明らかとなってきました。このままでは 干ばつ、熱波、洪水など極端な気象現象のリスクが増加すると いう懸念がますます強まっています。

地球温暖化を防止し、気候システムを安定化させるために は、温室効果ガスの削減が必要です。2005年2月には「京都 議定書 | が発効し、先進国の温室効果ガス排出量を1990年 水準から6~8%削減することとなりました。

地球温暖化対策を進めるためには、地球温暖化の状況を正 確に把握することが不可欠で、そのためには、世界各地域の温 室効果ガスの濃度とその増減を観測する必要があります。しか しながら、現在の地上観測点の数は不十分で、地域的にも偏っ ています。

温室効果ガス観測技術衛星「いぶき」(GOSAT:Greenhouse Gases Observing Satellite) は宇宙から温室効果ガスの 濃度分布を観測する人工衛星で、温室効果ガス吸収排出状況 の把握など、温暖化防止への国際的な取り組みに貢献するこ とを目的としています。

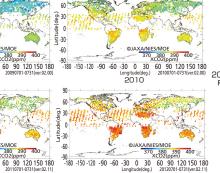
It is becoming ever clearer that average temperatures and sea levels are rising and climate changes are occurring as a result of the global warming induced by the greenhouse gases such as carbon dioxide and methane emitted into the atmosphere through the activities of humans. There is rising concern that the risk of extreme weather phenomena such as droughts, heat waves and floods will increase if this situation remains unchanged.

In order to prevent global warming and stabilize the climate system, it is necessary to reduce emissions of greenhouse gases. The "Kyoto Protocol" came into effect in February 2005, it states that developed countries should reduce their emission of greenhouse gases by 6~8% from the standard of 1990.

In order to promote global warming countermeasures, it is essential to monitor the state of global warming precisely, and for this purpose it is necessary to observe the concentration and increase/decrease in greenhouse gases at various locations throughout the world. However, the current number of ground observation points is not sufficient and there is a strong geographical bias.

The IBUKI (GOSAT: Greenhouse Gases Observing Satellite) is an artificial satellite that observes the concentration distribution of greenhouse gases from outer space, and its purpose is to contribute to the international effort toward prevention of warming, including monitoring the greenhouse gas absorption and emission state.

温室効果ガス観測へのグローバルな取り組み「いぶき」


Global effort made for observation of greenhouse gases "IBUKI"

衛星による温室効果ガス観測の特徴

温室効果ガスの濃度分布は地上の観測地点や航空機からも観測されていますが、その数は348点(2013年1月現在)と少なく地域的にも偏っています。「いぶき」は約100分で地球を1周する軌道から、地球表面のほぼ全域にわたって、等間隔で二酸化炭素やメタンなどの温室効果ガスの濃度分布を3日に1回測定することができます。そのため、従来に比べて飛躍的に観測点数を増加させるとともに観測データが全く無かった地域のデータも取得することが可能となりました。そして、これらの濃度データを用いてこれまでに二酸化炭素の吸収排出量の推定精度を最大で40%向上することが出来ました。このデータは各国の政府機関や科学者のみならず、登録することで、誰でも利用することが可能です。

2009年7月の推定結果 地域別の吸収排出量の推定値 Regional basis global net CO₂ fluxes for July 2009

432.101234

地上観測点の図(WMO-WDCGGによる) Diagram of global observation points (ref. WMO-WDCGG)

2011 2011 2012 [しいぶき」の観測データから算出した2009年から2012年の7月の二酸化炭素の濃度分布図 COz concentration map in July from 2009 to 2012 derived from the observation data of "IBUKI"

2010年1月の推定結果 地域別の吸収排出量の推定値 Regional basis global CO2 fluxes for January 2010

高度な技術で実現する高精度観測

「いぶき」は、温室効果ガス観測センサ(TANSO-FTS)と、それを補助するための雲・エアロソルセンサ(TANSO-CAI)を搭載しています。温室効果ガス観測センサは、近赤外域~熱赤外域を約18,500のチャンネルで観測することで、観測精度を高めています。雲・エアロソルセンサは、温室効果ガス測定の誤差要因となる雲やエアロソルの観測を行い、温室効果ガスの観測精度を向上させます。

Highly accurate observation realized through advanced technology

IBUKI is equipped with a greenhouse gases observation sensor (TANSO-FTS) and a cloud-aerosol sensor (TANSO-CAI) that supplements TANSO-FTS. TANSO-FTS observes wavelength region from near infrared region to thermal infrared region at approximately 18,500 channels to increase observation accuracy. A cloud-aerosol sensor observes clouds and aerosol that can be a factor leading to errors in the measurement of greenhouse gas in order to improve greenhouse gas observation accuracy.

観測原理

「いぶき」は、太陽から放射され地表面で反射した赤外線や、地表や大気自体から放射される赤外線のスペクトルを宇宙で観測します。赤外線は、温室効果ガスを透過する際に、特定の色、すなわち特定の波長が吸収されます。「いぶき」では、この原理を用いて、大気中の温室効果ガスの濃度を算出することができます。

Observation principle

IBUKI observes infrared rays radiated from the sun and reflected from the ground surface and the spectrum of infrared rays radiated from ground surface or the atmosphere itself. As they pass through a gas infrared rays are absorbed only by specific colors, which means components with a specific wave length are revealed. IBUKI calculates the concentration of greenhouse gas in the atmosphere utilizing this principle.

Characteristics of greenhouse gas observation utilizing a satellite
The concentration of the greenhouse gases has been observed at observaion sites on

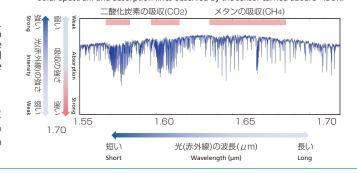
the ground and by aircrafts. However, there are only 348 sites (as of January 2013) and

measure the concentration of greenhouse gases such as CO2 and CH4 over almost the

entire surface of the earth at equal intervals every 3 days from the orbit traveling around the earth in approx. 100 minutes. This has made it possible to increase the

observation points exponentially than before as well as obtaining the data over the

region where we had no data until now. And it has been able to improve the estima-


tion accuracy of the net flux of CO₂ by up to 40% until now through the use of these

data. The data obtained is Anybody can use these data if they register as well as

these sites place a disproportionate emphasis on a few areas. "IBUKI"

providing to governmental Institutions and scientists of various countries.

「いぶき」搭載センサで観測した太陽光スペクトルと吸収線 Solar Spectrum and absorption lines observed by the sensor carried aboard "IBUKI"

「いぶき」の開発利用体制

「いぶき」はJAXA、国立環境研究所、環境省の共同プロジェクトです。JAXAは、主にセンサおよび衛星の開発、打ち上げ、運用を行います。環境省と国立環境研究所は、主にデータの高次処理と利用を行います。

Development and usage system of IBUKI

IBUKI is a cooperative project among JAXA, the National Institute for Environmental Studies (NIES) and the Ministry of the Environment (MOE). JAXA mainly takes charge of development, launching and operation of sensors and satellites. MOE and NIES carries out advanced processing of data and utilizes it.

温室効果ガス観測センサ:TANSO-FTS (Fourier Transform Spectrometer)

太陽電池パネル (Solar Array Panel)

X-bandアンテナ (X-band Antenna)
雲エアロソルセンサ:TANSO-CAI (Cloud and Aerosol Imager)

質量約1750kg(打ち上げ時) Mass:Approx. 1750kg 電力:3.8kw(寿命未期) Power:3.8kw(EOL) 設計寿命:5年 Designed Life span:5years 軌道:高度666km orbit:Altitude 666km 太陽同期準回帰軌道 Sun-Synchronous Sub-Recurrent 傾斜角 約98度 orbitInclination Approx.98deg

http://www.satnavi.jaxa.jp/project/gosat/

JAXAホームページ>事業概要>プロジェクト>人工衛星・探査機>地球観測> 温室効果ガス観測技術衛星「いぶき(GOSAT)」・関連リンク>(Japanese only)

空へ挑み、宇宙を拓く

再生紙を使用しています

ISF130310T

宇宙航空研究開発機構 広報部

〒101-8008 東京都千代田区神田駿河台4-6御茶ノ水ソラシティTel.03-5289-3650 Fax.03-3258-5051

Japan Aerospace Exploration Agency Public Affairs Department

Ochanomizu sola city,4-6 Kandasurugadai, Chiyoda-ku Tokyo 101-8008,Japan Phone:+81-3-5289-3650 Fax:+81-3-3258-5051 JAXAホームページ JAXA Website http://www.jaxa.jp/

温室効果ガス観測技術衛星「いぶき(GOSAT)」ホームページ http://www.jaxa.jp/projects/sat/gosat/index_j.html

Greenhouse Gases Observing Satellite "IBUK!" (GOSAT) Website http://www.jaxa.jp/projects/sat/gosat/index_e.html

メールサービス JAXA Mail Service http://www.jaxa.jp/pr/mail/